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ABSTRACT

Helicopters are used extensively to transport initial-attack crews to forest fires in the
province of Ontario. Each day fire managers must decide how to allocate the available
helicopters to initial-at.tack bases. The helitack transport system at each base can be
viewed as a multi-channel queue with customers (fires) and servers (helicopters). The
authors describe a time-dependent queueing model of the helitack system and use
numerical methods to estimate some of its operating characteristics. A dynamic pro-
gramming model is then used to specify an optimal allocation of the available helicopters
to helitack bases.

RESUME

Des hfelicoptferes sont employer souvent pour transporter les combattants d'attaque
initiaie aux incendies forestieres dans la province de l'Ontario. Chaque jour Ies gerants
d'operations doivent decider comment attribuer les helicoptferes disponibles aux bases.
On peut envisage le systeme de transportation comme un systfeme d'attente avec une
ou plusiers chaines (h^licoptferes) et clients (incendies). Les auteurs decrivent un module
math^matique du systfeme de transportation par hfelicopteres et ils utilisent les techniques
numeriques pour estimer quelques de ses caracteristiques d'operation. Un module de
programmation dynamique est utiliser pour specifier une attribution optimal des hfeli-
coptferes aux bases.

1 INTRODUCTION

The importance of early initial-attack has long been recognized by forest
fire managers. The sooner an initial-attack crew begins control action on
a fire, the more likely it will be extinguished at a small size. Because most
forest fires in the province of Ontario are not readily accessible by land
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or water, fire managers were quick to appreciate the merits of airborne
initial-attack. An abundance of lakes in forested areas, together with the
development of float-equipped STOL aircraft like the Beaver and Otter,
made it possible to build an effective airborne initial-attack system.

In recent years, there has been an increased use of helicopters for
initial-attack transport purposes. The reduced landing area requirements
of helicopters makes it possible for an initial-attack crew to land close to
the fire and thereby reduce their ground travel time. The critical time
interval between discovery and the start of initial-attack is thus de-
creased.

In this paper, we explore the possibility of using queueing theory and
dynamic programming to develop decision-making aids to assist fire
managers who must decide where to locate their helicopters each day. We
focus on the transportation aspect of initial-attack using helicopters,
upon a "queue" of fires whose arrival rates are described by time-depen-
dent probabilities. Following Koopman,'"' we present a set of differential
equations, the solution of which gives the probability that at a time t
there are n fires in the queueing system. Numerical solution yields the
time-dependent distribution of queue sizes.

The queueing results furnish the single-stage returns for a dynamic
programming algorithm that can be used to specify an optimal allocation
of helicopters to helitack bases. To illustrate the procedures, a numerical
example based upon data from Northwestern Ontario is solved. We then
discuss how the model might be refined.

2 THE INITIAL-ATTACK TRANSPORT SYSTEM

The province of Ontario is divided into a number of regions, each of which
is further subdivided into several districts. In each district there are one
or more helitack bases. Each point in a district is assigned to one of the
helitack bases in order to create non-overlapping sectors, equal in number
to the number of helitack bases.

A fire which occurs in a given sector is presumed to be served by a
helicopter stationed at that sector's helitack base. Although this dis-
patching rule may seem overly restrictive, the distances between helitack
bases are usually such that we believe this simplifying assumption to be
reasonable.

Each morning the regional fire manager must decide how to allocate the
available helicopters among the helitack bases within the region. We will
assume that the number of available helicopters is such that at least one
helicopter can be allocated to each base. We further assume that the
helitack aircraft will be used solely for initial-attack transport purposes
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and that the allocation made in the morning remains in effect for the
entire day. Given these assumptions, the helitack transport system can
be viewed as being comprised of a queueing system in each sector which
operates independently of the other sectors in the region.

The queueing system in each sector can be envisaged as follows. Each
time a fire is reported to the district dispatcher (customer arrives), the
following sequence of events occurs:
1 The fire enters the initial-attack queue and awaits service.
2 As soon as a helicopter is available, it is used to service the fire which is

waiting at the front of the initial attack queue. Service includes loading
the crew, taking off, flying to the fire, scouting the fire, landing the
crew, taking off again, flying back to the initial-attack base, landing
and refuelling.

3 The helicopter is then available to transport another initial-attack
crew to the next fire in the queue.

Usrng the standard terminology of queueing theory, the helitack system
in each sector can be characterized as follows:
Arrival Process: The reporting of fires that require initial-attack is
assumed to be a non-stationary Poisson process with the arrival rate
depending upon the time of day.
Service Process: The service time distribution can be approximated by a
stationary negative exponential distribution.
Queue Discipline: Since we are considering only initial-attack transport,
it is reasonable to assume that the service discipline is First In, First Out.
System Capacity: Because the number of initial-attack crews available is
finite, it is reasonable to limit the system capacity to some large number
N. Sensitivity to the choice of N is discussed below.
Number of Channels: The number of service channels at a base is the
number of initial-attack transport helicopters assigned to that base.

3 THE FIRE ARRIVAL PROCESS

Cunningham and Martell'̂ ^ showed that the number of man-caused fires
that occur each day in a district can be represented by a Poisson distribu-
tion. It is reasonable to assume that the probability distribution of the
number of lightning-caused fires that occur each day is also Poisson.
Since the sum of independent Poisson-distributed random variates is also
Poisson,"̂ "̂  we can assume that the probability distribution of the number
of fires that occur in a sector each day is Poisson.

Not all forest fires are detected on the same day that ignition occurs.
Since initial-attack crews can only be dispatched to fires that have been
reported, we need only consider the number of fires that are reported or
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arrive each day. The term arrival is used to distinguish a reported fire
from a fire occurrence (ignition). The fires that arrive on a given day
include some fraction of those that occurred on that day, some fraction
of those that occurred on the previous day, and so on. Since the Poisson
distribution is preserved under random selection,f"' it is reasonable to
assume that the probability distribution of the number of fires that arrive
in a sector each day is Poisson.

Let F denote the expected number of forest fires that arrive in a par-
ticular sector on a given day. Because of diurnal weather variations and
the characteristics of the detection system, the rate at which fires arrive
varies during the day. We will assume that fires arrive according to a
non-stationary Poisson process. Suppose the day is divided into T time
periods and the length of period j is tj hours. Let pj denote the probability
that a fire which arrives in the sector does so during period j . Let X,
denote that fire arrival rate in the sector during period j , expressed in
terms of fires per hour. We will suppose that X̂- can be estimated using the
following equation:

h = iPjF)/tj. (3.1)

4 THE INITIAL-ATTACK TRANSPORT SERVICE PROCESS

On any given day, there are usually a number of different types of heli-
copters devoted to initial-attack transport. Most fire managers would
prefer to use a large helicopter with the capacity to carry an entire five
person unit crew and a standard load of helitack fire suppression equip-
ment. To simplify our model, we will assume that the same type of heli-
copter is being used at all helitack bases within a single region.

The helitack transport service time for each fire includes the time
required to load the helicopter, transport the initial-attack crew to the
fire, return to the helitack base and refuel. The minimum service time will
therefore exceed the time to load, take off, land, take off, land, and refuel.
This time will, of course, vary, depending upon the alert status of the
initial-attack crew, the fire boss's need to scout the fire and the ease of
landing near the fire. Furthermore, a helitack crew would not be dis-
patched to fires that are located a short distance from the base. The
service time would therefore be bounded from below by some non-zero
time. Even though remote fuel caches are sometimes used, the transport
service time is also limited to some upper bound, depending upon the
helicopter's flying range and/or the sector boundary.

Although the actual service time distribution should be truncated
above and below, we will assume that a standard negative exponential
distribution is a satisfactory approximation. The mean service time will
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be denoted by 1/ti,, where the service rate of each helicopter is M fires per
hour. The number of service channels in each sector corresponds to the
number of helicopters allocated to it for the day. However, only one queue
will operate at each base, with service provided by the first available
helicopter.

5 THE DISTRICT HELITACK QUEUEING SYSTEM

5.1 Introduction
Consider a queueing system for which the arrival rate \(t) and service
rate \x{t) are time-dependent. That is, in the case of Poisson arrivals,
\{t)At is the probability that between times t and (t -{- At) a customer
joins the queue. Similarly, if the service distribution is negative exponen-
tial, ix{t)At is the probability that a customer has finished service by time
(t + At), given that at time t service has already begun.

Until a short time ago, the quantitative analysis of a time-dependent
queueing system was limited either to computer simulation or to treat-
ment as a Markov process possessing steady-state transition probabil-
ities. The former approach often entails costly computer expenditures.
The steady-state treatment, on the other hand, is often inappropriate
when, as is the case with forest fire initial-attack transport, customer
arrival rates are time dependent. To study the transient behaviour of
such queues, it is clear that a fully time-dependent approach is desirable.

The first treatment of the M/M/1 queueing system with time-varying
parameters A(0 and fi{t) was by Clarke.'^' The equations for a birth and
death process (see, for example, Saaty<"> were solved analytically to
yield complicated expressions for Pn{t), the probability that at time t
there are n customers in the queueing system. This approach, based upon
an integral equation for the generating function of Pn{t), is a suitable
starting point for a calculation if analytical expressions are available for
both \{t) and fi{t).

Often, however, one has available only numerical estimates for \(t)
and nit). In such a situation, it is computationally advantageous to
numerically solve the birth and death equations directly. This was the
approach taken by Koopman.<"' Assuming time-dependent Poisson
arrival rates X(0, and treating the queue evolution as Markovian, he
derived a system of weakly coupled stochastic differential equations for
Pn{t). This system differs from the usual set of forward or backward
equations'i^^ in that there is an upper limit of N customers which may be
in the queueing system at any given time (i.e.; for all t, Pnif) = 0 for
n > N). Using for X{t) actual flight statistics concerning landings at
Kennedy and LaGuardia airports in New York, Koopman<i» obtained a
numerical solution of the set of equations.
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^ also briefly treated the case of multiple queues, in which
the same runway (i.e. same "server") is used for both the arrivals and
departures of aircraft. He derived, but studied only qualitatively, an
analogous system of (N -\- l)(M -\- 1) differential equations for Pnm{t)j
the probability that at time t there are n aircraft in the air awaiting
landing clearance and m in the ground queue awaiting takeoff. This sys-
tem of equations for multiple queues of aircraft under time-dependent
conditions has been solved by Bookbinder and Luthra*^ '̂ (see also Book-
binder^i'), and policy options presented for Toronto International Airport.

Similar approaches to air transportation based upon Koopman's work
have been used by Hengsbach and Odoni'" to estimate the time-deperi-
dent marginal cost due to aircraft delay, and by Bundy and Gififin̂ '̂ in a
study of air traffic-control communications as a time-varying queue with
feedback. Kolesar et al.*̂ !"' have used Koopman's equations to estimate
the transient delays of urban police cars in responding to alarms.
Moore'"' has published an imbedded Markov chain analysis of non-
stationary single-server queues.

It should be noted that in the preceding references and in the approach
of the present paper, a time-dependent approach was used because the
arrival rate v/as not constant, but varied significantly throughout the
period of interest. Consequently, there is no question of using a steady-
state solution; the latter may not exist and in any case it is not meaning-
ful. Numerical solution of the birth-and-death equations is required to
find P^(t).

On the other hand, even for constant X and n, one may be interested in
the transient solution for Pn(t). This is, of course, the solution for "small
times," before the steady-state values P^, independent of time, are
reached. Recent work by Grassmann'^' has shown how to compute nu-
merically such transient solutions efficiently.

5.2 Time-dependent equations for an S-server queue
The queueing aspects of our initial-attack transport model arc based
upon the work of Koopman'"' and the numerical work of Bookbinder.'^'
Consider a sector in which there are 5 initial-attack transport helicopters.
The appropriate generalization of Koopman's equations for the case of 5'
helicopters is (Kolesar at al . '" ' ) :

w = 0 rfPoM = ~Ht)Po(t) + iiPi(t),
r<n<S <N dPJdt = -(\(t) -f

I <S <n <N dPJdt = -(\(t) -f S,x)Pr,(t) -I- \(t)P,_i(t)

n = N dP^/dt =
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TABLE 1

FREQUENCY DISTRIBUTION OF FOREST FIRE
ARRIVAL TIMES

Time Interval

5-6
6-7
7-8
8-9
9-10

10-11
11-12
12-13
13-14
14-15
15-16
16-17
17-18
18-19
19-20
20-21
21-22
22-23
23-24

Relative
Frequency

.0000

.0186

.0139
• .0162

.0348

.0580

.1206

.1369

.0951

.1253

.1508

.0998

.0394

.0348

.0232

.0162

.0139

.0023

.0000

Cumulative
Relative

Frequency

.0000

.0186

.0325

.0487

.0835

.1415

.2622

.3991

.4942
,6195
.7703
.8701
.9095
.9443
.9675
.9838
,9977

1,0000
1,0000

where Pn{t) is the probability that at time t, there are n customers in the
sector queueing system, including, of course, any that are presently being
served. N, which is the sector queueing system capacity, will be discussed
below.

6 NUMERICAL SOLUTION IN THE TRANSIENT CASE

6.1 Numerical values of parameters
The system of differential equations governing the evolution of the
queueing system (hereafter referred to as (I)) requires the specification
of X(0, M- ^ a n d the initial conditions Pn{h), n = 0,1, 2, ... N. Note that
we have specialized to the case iJi{t) = ji for all t.

For the example considered in this paper, the arrival rate \{t) is based
on an analysis of 430 fires which occurred in the northwestern region of
Ontario during the summers of 1967 through 1969.<̂ i2> The variation of
the fire arrival rate throughout the day can be represented by an empirical
probability function pj (see table 1) which for j = 1, 2, 3, ... 19 represents
the relative likelihood of a fire being detected during the discrete time
interval J. (j = 1 refers to the period 5 A.M. to 6 A.M., j = 19 to the time
between 11 P.M. and midnight.)
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It is reasonable to assume that the relative likelihood of fires being
detected during difî erent periods of the day is the same for thait time
period every day. Accordingly, if tj equals 1 hour, the arrival rate X(i) is
pjF. Here, F is a scale factor which represents the expected number of
fires that arrive on the given day.

6.2 Service rates
Our service time distribution is based upon data from the Red Lake dis-
trict of Northwestern Ontario.'̂ '• '̂ Thirty-five helitack sorties were
assumed to be representative of the helitack operation of the Ontario
Ministry of Natural Resources. The service times varied from 0.3 hours
to a maximum of 3.7 hours. The mean service time of 1.53 hours corre-
sponds to a service rate /z of 0.65 fires per hour.

It should be noted that for the 35 sorties in question, the standard
deviation a of service times is only 0.74 hours, a/n is thus approximately
1/2, whereas for a negative exponential distribution, a == n. Moreover, it
would be unusual to observe a service time less than 0.2 hr or greater than
about 4.0 hr. (The helitack "zone of infiuence" for most helicopters is
usually less than 100 miles.) These remarks concerning a and yu cast
doubt upon the service times as a sample from a negative exponential
distribution.

Our suspicion that the service time distribution is not negative expo-
nential was.confirmed by the results of goodness-of-fit tests. We used
three tests suggested by Gross and Harris'^': the F test, the Kolmogorov-
Smirnov test, and the Anderson-Darling test. In all three cases, the null
hypothesis that the service time distribution is negative exponential was
rejected at the a = .01 level of significance.

Nevertheless, Koopman'^^ showed that the calculations of averages,
such as expected number in the queue and the mean waiting times, are for
an M/G/1 queue remarkably insensitive to whether or not the service
distribution is negative exponential (i.e., completely "random") or even
constant (deterministic). Following Koopman^^ '̂ we argue that these
two extremes must surely bracket the actual situation in cases when one
is primarily interested in the calculation of system averages. Accordingly,
we employed the set of equations (I), which requires a negative exponen-
tial service distribution, with M given by its average value of L53 hours.

6.3 Maximum number in queueing system
Were it not for the imposition of the maximum queue size N iPnit) = 0 for
n > N), the number of equations in the system would be infinite. In the
steady state, these infinitely many equations are easily solved recursively
in terms of the ratio p = \/jj.. For the transient case, however, one must
work with a finite system.
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The choice of N is dictated by numerical considerations. One begins
with an initial choice, solves the system (I) for Pnit), and examines the
values of P^/it) for times during the busy period. Even during the hours
of peak activity, for properly chosen N, the magnitude of Pifit) should
approach zero. If this is not the case, N must be increased and numerical
solution repeated.

6.4 Numerical procedures
Initiation of numerical solution of the differential equations requires
specification of the probabilities Pnito)- Since the integration begins at
to = 5 A.M., the first thought is to take

Po(5) = 1, (6.4.1)

with Pni5) = 0 for « > 1. This corresponds to an initially empty queue-
ing system, and is consistent with the frequency distribution of forest fire
arrival times (table 1).

However, for times of 8 P.M. and later, it is usually too dark for dis-
patch to be initiated. This required elimination of the terms involving n
from the set of equations (I). Even though X,- is small between 8 P.M. and
midnight, the queue begins to lengthen, since n is effectively zero during
this time. Thus, for a sequence of days in which the relative probabilities
are given by table 1, Pn(5 A.M.) is not dno, where Sno is 1 if w equals zero,
and is zero otherwise. Rather, PK(5 A.M.) is given by the probability dis-
tribution of fires which prevailed on the previous midnight.

Use of the latter distribution as the initial condition only effects the
calculated Pnit) for the first hour or two the following day (with the
length of this transient period depending upon F and 5). After this period
the {Pnit)} are identical when calculated from either set of starting
values. Since we were interested in the maximum queue length, which
does not occur in either case until 3 or 4 P.M., for convenience we have
used 5no as the initial set {Pn(5)}.

With (6.4.1) as initial conditions and the above modification for M.
numerical integration proceeded by first smoothing the arrival rate X(i).
That is, to remove the "artificial" divisions caused by hourly boundaries,
we took for the discrete units of time j = 1, 2, 3 the moving average

X, = (X,_i + X, + X,+i)/3.

End-point corrections at times 5.0 hr and 24 hr were chosen such that the
sum of the expected numbers of fires was unchanged for the day as a
whole. This smoothed arrival rate Was used as coefficients in (I).

Numerical solution of the differential equations was accomplished
through a double-precision, Runge-Kutta approach based upon the
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fourth-order formulas of Fehlberg.t''̂  A variable step size M was used,
in order to keep the local error per unit step within a tolerance of 0.1%.
Where necessary, a linear interpolation was performed between successive
values of the already smoothed X.

The result of the integration is thus, for each value of 5 and F, the dis-
tribution Pnit) throughout the day. From this distribution, we calculated

max L^iS, t).
t

where L^ is the expected number of fires actually awaiting service. This
number is used as input to the dynamic programming algorithm for heli-
copter allocation, which is discussed in the following section.

7 THE HELICOPTER ALLOCATION MODEL

Each morning, the regional fire manager must decide how to allocate the
available helicopters among the helitack bases within his region. Since
the primary objective of a helitack system is to deliver an initial-attack
crew to the fire as quickly as possible, he will, of course, make an alloca-
tion so as to minimize congestion in the queues. Since not all sectors are
of equal value, the manager will also likely attempt to take relative
damage potential into account.

Suppose the parameter Vj^ denotes the relative fire daimage that might
be incurred if an acre of forest in sector k is burned, compared to an acre
in another sector. Without loss of generality, we can assume that Vj^ ranges
from 0 to 1. In other words, if v,, equals .2 and Vj equals .4, we are assuming
that the penalty for delaying initial attack on a fire in sector j is twice
that in sector k.

We believe that most regional fire managers would be satisfied with an
objective of minimizing the maximum expected queue length, summed
over all sectors and weighted by the damage parameters v,,. Such an
objective would represent a desire to minimize congestion while taking
the relative values of different sectors into account.

Assuming that at least one helicopter is allocated to each of B helitack
bases and letting X^; denote the number of helicopters allocated to base k,
the allocation problem can be formulated as a simple dynamic program-
ming problem with the following recursion relationship.

Min ( V, Max Z,(X,, t) + ft - X,)) ,
/

where S^ denotes the number of helicopters available at the start of
stage k.
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TABLE 2

SECTOR FIRE LOAD

Sector

1 10 .2
2 5 .6
3 3 .3

TABLE 3

MAXIMUM EXPECTED QUEUE LENGTHS

Number of
helicopters

1
2
3
4

1

3.2612
1.0911

.3163

.0834

Base

2

.8968

.1627

.0270

.0040

3

.3109

.0367

.0042

.0004

8 EXAMPLE

As a numerical example, consider the allocation of six helicopters among
three helitack bases. The average number of fires per day and the damage
factors are shown in table 2.

The queueing model described in Section 5 was used to estimate the
maximum expected queue lengths that would occur in each sector, de-
pending upon the number of helicopters allocated there. These results
are shown in table 3. (N.B. These refer to the expected numbers of fires in
the queue and do not include any fires presently being serviced.)

Using these estimates and backward induction, one can derive the
optimal allocation of helicopters shown in table 4.

9 DISCUSSION

We wish to point out that the model we have presented could also be used
to help decide where to locate land-based fire retardant bombing aircraft.
The use of such aircraft is often governed by the "one strike" concept.
That is, they make only one sortie to a fire. The service time is therefore
independent of the length of time the fire waits in the queue. The only
major difference is that usually more than one retardant bomber is dis-
patched to each fire. It would be necessary to assume that this number is
the same for all fires and that together they constitute one server.
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TABLE 4

OPTIMAL HELICOPTER ALLOCATION

Base Number of helicopters

1 3
2 2
3 1

In the preceding pages we have described a model which we believe
captures the essence of the initial-attack transport helicopter allocation
problem. It has, of course, been necessary to make a number of simpli-
fying assumptions that should be explored more fully in future research
efforts. For example, although a FIFO queue discipline was assumed, some
fires, particularly those threatening high value areas, are dealt with on a
priority basis. The helitack operation at each base was assumed to operate
independently of all other bases in a region. Although this is usually the
case, fire crews are sometimes dispatched to fires in neighbouring sectors.

While we believe that our model can be used to help forest fire mana-
gers, further research should be undertaken to develop an expanded
model that incorporates more of the complexity of the helitack planning
problem. For example, the model should be expanded to include various
modes of transport, including different types of helicopters, fixed-wing
aircraft, and road travel. This would of course entail a detailed analysis
of dispatching rules, an important aspect of fire management which is
beyond the scope of our present model. Our hope is that future develop-
ments in queueing theory will miake it possible to incorporate these and
other aspects of initial attack planning into an improved fire manage-
ment decision-making aid.
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